Skip to the content
Pragmatic Coders
  • Services
        • All Services
        • Software Development
          • Web & Cloud App Development
          • Mobile Application Development
          • No-Code Development
          • Software Project Rescue
          • DevOps Services
        • Custom Fintech Software
          • Trading Software Development
          • Custom Banking Software
          • Custom Financial Software
          • Mobile Banking App Development
          • Blockchain Development
        • Custom Healthcare Software
          • Patient Portal Development
          • Telehealth App Development
          • Custom Physical Therapy Apps
          • Custom Telemedicine Software
          • Custom Patient Engagement Apps
        • AI Software Development
          • AI Agents Development
          • AI Integration Services
          • AI Data Solutions
          • Vibe Coding Rescue
        • Product Design
          • UX Research
          • UX Design
          • UI Design
        • IT outsourcing
          • Nearshore Outsourcing
          • Offshore Outsourcing
          • Build Operate Transfer
  • Industries
        • All Industries
        • Fintech
        • Digital Health
        • E-commerce
        • Entertainment
        • Custom Software Development Services
        • Business Consulting
  • Case Studies
        • All Case Studies
        • FintechExplore our curated fintech case studies, showcasing the cutting-edge software solutions we’ve developed to revolutionize the financial technology landscape.
          • Atom Bank - One Of UK's Top Challenger Banks
          • KodyPay - Payment Platform
          • BLOC-X - OTC Commodity Trading
        • Blockchain
          • Common Wealth: Web3 investing platform
          • UltiArena: Play-to-Earn NFT Hub
          • EXCC - Developing New Blockchain
        • Digital HealthBrowse through our digital health case studies, illustrating how our technology innovations are transforming healthcare, enhancing patient outcomes, and streamlining medical processes with bespoke software solutions.
          • WithHealth - Medical Platform
          • AccentPharm - Medical Translations
          • Health Folder - Medical Documentation Management
        • E-commerce/RetailDiscover our e-commerce case studies, highlighting our development of scalable, user-centric platforms that boost sales, enhance the shopping experience, and streamline operations in the digital marketplace.
          • Kitopi - Smart Kitchen
          • Webinterpret - Cross-platform E-commerce
          • Photochain: Decentralized photo marketplace
        • EntertainmentExplore our case studies in entertainment projects, where creativity converges with technology to create immersive and engaging digital experiences that captivate audiences globally.
          • Unlocked - Events Management
          • Duel - Social Media App
          • OnLive: Decentralized streaming platform
        • AIDive into our AI case studies to discover how artificial intelligence is applied to solve complex challenges, improve decision-making, and increase efficiency across various industries with our advanced solutions.
          • Accounting Automation
          • US Patient Care Platform | AI & Data Science
  • About us
        • About us
        • Meet Our Team
        • How We Work
        • Become a Partner
        • News
        • Join Us!
  • Blog
        • All curated categories
        • Authors
        • FintechInterested in the development of a new custom fintech product? Check our articles about new fintech trends and fintech product development. If you are looking for experienced fintech software development partners do not forget to check our fintech software development services. You may also find interesting our blockchain development services.
        • Digital HealthDigital health encompasses the use of technology and data to improve healthcare delivery and patient outcomes. If you want to build a digital health app, check out our healthcare software development services.
        • Blockchain
        • AI
        • Product Development
        • Product Management
        • Product DesignA successful product needs to be well planned and tested by its users as early as possible. Here we share our knowledge and experience from more than 60 startups we helped build in the last years.
        • Agile & Scrum
        • Startup
        • Outsourcing & Collaboration
  • Resources
        • All Resources
        • Tools
          • Market Insights AI
          • Trade Easy AI
        • Guides
          • Fintech guide
          • Digital health guide
          • Insurtech guide
          • AI trends
        • Other
          • Newsletter
          • Glossary
          • Product Health Checklist
          • Best AI for coding in 2025: AI tools for developers
          • 60 startup business model patterns for 2025
        • Ebooks
          • How to start a startup
          • How to go live with your product in less than 3 months
        • Video
          • Podcast
          • Webinars
  • Contact us
Congrats, you are up to date! Now you can impress your friends with your cutting-edge knowledge.
Mark all as read
Contact Us
Home Pragmatic Blog AI What is hyper-personalization?
AI
Updated: Aug 13,2024 Published: Jan 19,2024
11 min read

What is hyper-personalization?

What is hyper-personalization?

You’re browsing an online store, and it feels like it’s reading your mind. Each product that pops up is exactly what you’re looking for, and the special offers seem tailor-made for your interests and budget.

Scary (giving dystopia vibes)… and cool at the same time.

Welcome to the world of AI-powered hyper-personalization, where shopping online, taking care of your health, or using banking services is like having a personal concierge who knows your needs and preferences inside out. This isn’t a glimpse into a distant future; hyper-personalization is now.

Read on to learn more about this game-changer in user experience.

 

tl;dr

  1. DEFINITION. Hyper-personalization uses real-time data and AI to create customized experiences for an individual customer.
  2. PERSONALIZATION VS. HYPER-PERSONALIZATION. Personalization offers general recommendations based on past behavior, while hyper-personalization provides real-time, context-aware experiences.
  3. EXAMPLES. Examples of hyper-personalization include personalized financial advice and product offerings based on individual spending habits and financial goals (banking) or providing personalized health plans and reminders based on individual health data and history (healthcare).
  4. BENEFITS. Hyper-personalization enhances customer engagement, removes sales obstacles, boosts conversions, and fosters customer loyalty.
  5. HOW IT WORKS. Hyper-personalization involves collecting data, analyzing it, building customer profiles, forecasting future behaviors, and providing real-time and personalized communication.
  6. TECHNOLOGIES. Hyper-personalization leverages technologies like AI, ML, data analytics, Big Data, predictive analytics, NLP, CRM, IoT, cloud computing, and blockchain.
  7. CASE STUDIES.  Hyper-personalization is being used across various industries, including personalized banking or personalized healthcare.
  8. CHALLENGES. Implementing hyper-personalization requires careful consideration of privacy, data collection, legal compliance, and algorithm bias to ensure customer trust and fairness.

 

What is hyper-personalization?

Hyper-personalization is the process of using real-time data and advanced technologies like AI and machine learning to provide a highly relevant and personalized experience to each user.

Personalization vs. hyper-personalization

What is personalization vs. hyper-personalization?

Personalization involves tailoring experiences based on basic user information, while hyper-personalization uses advanced data analysis, including real-time data, to create highly specific and individualized user experiences.

Hyper personalization is the next level of tailored customer experiences.

Unlike basic personalization, which might just use your name in an email, hyper-personalization digs deeper. It uses data like browsing history, purchase patterns, and preferences to offer a truly individualized experience.

Think of it as the difference between getting a generic birthday card and one perfectly capturing your unique interests.

Hyper-personalization. Examples

In the table below, you can see the various applications and examples of hyper-personalization and how it differs from traditional personalization.

Examples of personalization and hyper-personalization

Benefits. Why is hyper-personalization good?

The Deloitte report found that 80% of customers are more likely to purchase from a company that offers personalized experiences. Moreover,  69% of online shoppers say that the quality or relevance of a company’s message influences their perception of the brand. These findings suggest that hyper-personalization is a powerful tool that can help businesses improve their customer satisfaction, loyalty, and sales.

  • Enhanced customer engagement and satisfaction: Customers love feeling understood. Hyper-personalization makes them feel special and valued, leading to a stronger connection with the brand.
  • Removing obstacles from the sales process that could complicate user experience. Hyper-personalization avoids overwhelming customers with too many choices and smartly highlights products that resonate with their specific needs and preferences. This way, you can address customer pain points and provide optimal solutions.
  • Increased conversion rates and sales growth: When customers see products that resonate with their needs, they’re more likely to buy.
  • Customer loyalty and advocacy: Hyper-personalized experiences foster deeper customer connections, leading to increased brand loyalty, advocacy, and customer lifetime value.

How does hyper-personalization work?

To explain how hyper-personalization works, let’s use the example of an online retail store and break it down into steps:

  1. Data collection: The first step involves gathering data. For our online retail store, this includes tracking user behaviors such as browsing history, purchase history, items added to the cart but not purchased, search queries, and even time spent on specific product pages.
  2. Data analysis using AI and ML: The collected data is then analyzed using AI and machine learning algorithms. These technologies identify patterns in the data – for instance, if a user frequently views sports apparel or if they tend to purchase items during seasonal sales.
  3. Building customer profiles: Based on the analysis, a detailed customer profile is created. This profile includes not just the basic demographics of the user but also their preferences, buying habits, and potential interests.
  4. Predictive analytics: The system then uses predictive analytics to forecast future behaviors. For example, if a user regularly buys running shoes every six months, the system predicts when they are likely to make their next purchase.
  5. Real-time personalization: As the user interacts with the site, real-time personalization kicks in. If the user is browsing running shoes, the system might immediately display the latest models, deals on their preferred brands, or complementary products like athletic socks or fitness trackers.
  6. Customized communication: Hyper-personalization also extends to communication. The retail store sends out personalized emails or app notifications, perhaps alerting users about an upcoming sale on sports gear or new arrivals in their preferred brand.
  7. Feedback loop: Finally, the user’s response to these personalized experiences is fed back into the system, continuously refining the personalization algorithms. For example, if the user purchases a recommended product or clicks on a personalized email link, that information is used to further tailor future recommendations and communications.

Throughout this process, the key is the seamless integration of various technologies and the continual learning and adaptation of the system based on user interactions. This creates a highly personalized shopping experience, where each user feels the retail site is uniquely attuned to their preferences and needs. The key technology behind hyper-personalization is AI; here’s a guide on implementing AI into your software.

Hyper-personalization, thus, not only enhances the user experience but also significantly increases the likelihood of user engagement and sales conversion.

By 2026, one third of all new apps will use AI to create personalized and adaptive user interfaces. Hyper-personalization is a big trend. Learn more about it and the other 25 AI predictions for 2024.

How does hyper-personalization work

The role of technology in hyper-personalization

The key technologies driving hyper-personalization include:

  • Artificial intelligence: Employs algorithms to analyze user data and make predictions or decisions.
  • Machine learning: A subset of AI that enables systems to learn and improve from experience without being explicitly programmed.
  • Data analytics: Involves examining large data sets to uncover hidden patterns, correlations, and insights.
  • Big Data technologies: Facilitate the handling of enormous volumes of data that feed into personalization algorithms.
  • Predictive analytics: Uses statistical algorithms and machine learning techniques to identify the likelihood of future outcomes based on historical data.
  • Natural Language Processing (NLP): Enables computers to understand, interpret, and respond to human language in a useful way.
  • Customer Relationship Management (CRM) systems: Help in collecting and managing customer data, which is essential for personalization.
  • Internet of Things (IoT): Connects everyday devices to the internet, providing more data points for personalization.
  • Cloud computing: Offers the necessary infrastructure and scalability for storing and processing large data sets used in hyper-personalization.
  • Blockchain: While more nascent, it has potential applications in securing personal data and ensuring privacy in personalization efforts.

Who uses hyper-personalization? Examples of hyper-personalization across industries

Below are 6 examples of hyper-personalization in e-commerce, banking, and healthcare.

Example of hyper-personalization in e-commerce

Amazon creates a unique homepage experience for each user through predictive analytics and item-based collaborative filtering. This method analyzes a user’s purchase history and compares it with others to suggest related products.

Amazon’s algorithm also combines purchase data with browsing habits, offering more tailored recommendations. For example, a customer buying a dog chew might receive suggestions for Pixar-themed dog toys. This approach generates 35% of Amazon’s revenue.

Stitch Fix uses AI and ML to personalize fashion recommendations and create individualized online stores for customers. They collect extensive data on customer preferences and sizes, using a gamified feedback system to refine style selections.

Their algorithms, including a foundational “latent style” model, help curate highly tailored fashion items and outfits. Stitch Fix also maintains human stylists in the loop, who use algorithmic suggestions and customer notes to fine-tune selections.

This blend of technology and human input optimizes customer satisfaction and reduces return rates, with a significant portion of sales coming from these personalized recommendations.

Examples of hyper-personalization in banking

Banks increasingly adopt AI to enhance customer service. As mentioned by The Banker, one notable example is Erica, a virtual financial assistant developed by Bank of America. Erica leverages data from account balances, past transactions, spend patterns, payment alerts, and duplicate charges to engage customers in personalized, proactive, and predictive conversations.

Another example is Monzo, a UK challenger bank. By analyzing user behavior and identifying common pain points, Monzo has equipped its customer service team with the knowledge and tools to resolve over 85% of daily business queries directly.

Examples of hyper-personalization in healthcare

23andMe is a personal genomics and biotechnology company that offers direct-to-consumer genetic testing services. By analyzing a person’s DNA from a saliva sample, 23andMe provides information about the individual’s ancestry, genetic predispositions to certain health conditions, traits, and wellness-related characteristics. The service aims to help individuals understand their genetic makeup and how it may impact their health and personal characteristics. Additionally, 23andMe engages in genetic research by using aggregated data from consenting customers for various studies.

Consumers are moving away from generic diets towards personalized eating plans, driven by the science of nutrigenomics. This field explores the interaction between food and genes, offering tailored dietary recommendations based on individual DNA. The personalized nutrition market, poised to reach $11.5 billion by 2025, leverages DNA testing for customized food recommendations. Companies like Thermofisher, in collaboration with IXLayer, provide DNA tools for businesses to integrate genetic-based personalization into their offerings.

How to design hyper-personalization functionalities?

Common-patterns-in-AI-products-User-Input-Selecting-existing-content

Designing AI interfaces for hyper-personalization requires a smart approach. It focuses on making AI work better for each user. Let’s look at five key areas that help create AI products tailored to individual needs.

Adaptive user interfaces

Adaptive user interfaces form the base of personalized AI experiences. These interfaces change based on how you use them. Think of Notion or VS Code, where you can select text and ask AI to summarize or translate it. Or consider Miro’s canvas, where AI can organize your sticky notes automatically.

Predictive features

Predictive features guess what you (the user) might want next. Spotify’s DJ agent is a good example. It suggests music based on what you’ve listened to before. This kind of AI is great at recommending content and predicting what you’ll like in the future.

Customization & confidence level

Customization options let you adjust your AI experience. You can give feedback, like thumbs up or down, to improve future suggestions. Some AIs even show how sure they are about their predictions (so-called confidence level). This helps you decide how much to trust the AI’s recommendations.

Contextual awareness

Contextual awareness means the AI understands what you’re doing right now. Arc browser, for instance, gives AI-generated summaries when you hover over links. Figma puts AI options in its right-click menu. These features fit naturally into what you’re already doing.

Multimodal interaction

Lastly, multimodal interaction lets you use AI in different ways. You can type, upload images, record your voice, or drag and drop content. This makes AI easy to use, no matter how you prefer to work with it.

If you want to learn more about what properly designed AI interfaces should look like, check this article: How to design a chatbot? Designing AI interfaces

Challenges in implementing hyper-personalization

  • Privacy concerns: With great personalization comes great responsibility for privacy. Customers want personalized experiences but also value their data privacy. Hyper-personalization can lead to… hyper-personalized social engineering attacks, as it was with the above-mentioned 23andMe (hackers stole ancestry data on 6.9 million users).
  • Data collection: Accurate and comprehensive data collection is key. The more data you have, the better the personalization, but it has to be collected ethically and legally.
  • Legal issues: Compliance with laws are crucial. Businesses must ensure they’re using data in a way that respects customers’ rights​.
  • Algorithm bias: AI algorithms used for hyper-personalization are trained on data, and if the data is biased, the algorithms will reflect that bias. This can lead to unfair or discriminatory treatment of certain groups of customers.

These challenges demand we carefully examine the ethical implications: How can the future of AI be harnessed to create a responsible and trustworthy hyper-personalized experience?

Conclusion

What is the future of hyper-personalization? When it comes to reasons for marketing professionals to use artificial intelligence (AI) to improve customer experience (CX) worldwide, 40% of marketers surveyed named “personalization, even hyper-personalization” as the number three reason to do it.

According to A2Z Market Research, the global hyper-personalization market is expected to grow at a significant CAGR of +11% during the forecasting period from 2022 to 2030.

Hyper-personalization is reshaping how businesses interact with customers. We will see more personalized content in social media, marketing campaigns, banking, retail product recommendations, and any other products and services around us. Our digital experience is going to become more personal than ever before.

get a quote

Author

Ewelina Lech View profile

Ewelina Lech

I research and write about fintech, digital health, & AI. With every piece of content, my goals are to transform complex topics into clear, actionable insights that everyone can understand. Especially excited about Gen Z-oriented tech (since I'm Gen Z myself, rel).

Newsletter
Recent Topics
Top AI Tools for Traders in 2025 cover
Fintech, AI
Top AI Tools for Traders in 2025
Expert sourcing with multi-agent AI
News, AI
Multi-Agent AI Systems for Expert Sourcing & Workflow Automation
Top AI Integration Companies in 2025 cover
AI, Product Development
Top AI Integration Companies in 2025
Gen Alpha Statistics 2025
Product Design, Management
Generation Alpha Statistics (220+ stats for 2025)
6 Untapped Gen Alpha Financial Habits Your Next Digital Product Needs to Know
UX, Product Design
What Are Gen Alpha’s Money Habits and How Can They Inspire Product Design?

Related articles

Check out our blog and collect knowledge on how to develop products with success.

Top AI Tools for Traders in 2025 Top AI Tools for Traders in 2025 cover
Fintech, AI
Jun 13,2025
20 min read

Top AI Tools for Traders in 2025

Multi-Agent AI Systems for Expert Sourcing & Workflow Automation Expert sourcing with multi-agent AI
News, AI
Jun 13,2025
3 min read

Multi-Agent AI Systems for Expert Sourcing & Workflow Automation

Top AI Integration Companies in 2025 Top AI Integration Companies in 2025 cover
AI, Product Development
Jun 10,2025
20 min read

Top AI Integration Companies in 2025

Our Chosen AI Software Development Services

Custom AI Software Development Services & Solutions Company

Custom AI Software Development Services & Solutions Company

We can build your AI app from scratch or implement AI solutions to your existing product. Get a free consultation today!
Learn More
AI Integration Services, Chatbot, GPT Solutions Company

AI Integration Services, Chatbot, GPT Solutions Company

Boost your business with expert AI integration services. Automate tasks, increase productivity, adopt generative AI. Book a free consultation!
Learn More
Custom AI Agent Development Services & Solutions Company

Custom AI Agent Development Services & Solutions Company

AI agents tailored to your needs. Automate processes, improve efficiency, and reduce costs. Scalable, secure, and built for your business.
Learn More
AI Data Preparation & Engineering Services & Solutions Company

AI Data Preparation & Engineering Services & Solutions Company

Deploy AI with confidence. Our data solutions ensure security, scalability, and real ROI for businesses ready to innovate.
Learn More

Newsletter

You are just one click away from receiving our 1-min business newsletter. Get insights on product management, product design, Agile, fintech, digital health, and AI.

LOOK INSIDE

Pragmatic times Newsletter
  • Business Consulting
  • Product Discovery Workshops
  • Product Management Consulting
  • Fundraising Consulting
  • Software Product Design
  • UX Design
  • UX Research
  • UI Design
  • Custom Software Development-services
  • Web & Cloud Application Development
  • Mobile Application Development
  • No-code Development
  • AI Software Development
  • Custom Blockchain Development
  • DevOps Services
  • Technology Consulting
  • Industries
  • Fintech
  • Digital Health
  • E-commerce
  • Entertainment
  • Custom Software Development Services
  • About Us
  • Meet Our Team
  • How We Work
  • Become a Partner
  • Newsroom
  • Featured Case Studies
  • Atom Bank
  • Kitopi
  • WithHealth
  • UltiArena
  • Resources
  • Digital Health Guide
  • Fintech Guide
  • Insurtech Guide
  • Newsletter
  • E-books
  • Podcast & Webinars
  • Blog
  • Product Development
  • Fintech
  • Digital Health
  • AI
  • Product Management
  • Agile & Scrum
  • Outsourcing & Collaboration
  • Blockchain
  • Startup
Pragmatic Coders Logo

ul. Opolska 100

31-323 Kraków, Poland

VAT ID: PL 6772398603

Contact

[email protected]

+48 783 871 783

Follow Us
Facebook Linkedin Github Behance Dribbble
© 2025 Pragmatic Coders. All right reserved.
  • Privacy policy
  • Terms of use
  • Sitemap